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Making a normal-mode assumption, we shall investigate stability with respect 
to non-axisymmetric perturbations of an inhomogeneous incompressible fluid 
rotating between two perfectly conducting, infinite, coaxial cylinders in the 
presence of an axial and a toroidal magnetic field. We shall establish sufficient 
conditions for stability, discuss the westward-drift nature of unstable modes 
and estimate upper bounds on the azimuthal phase speeds and growth rates. 
There will also be a discussion of the validity of the sufficient conditions for 
stability when the normal-mode assumption is not made, so that the stability 
is based on an initial-value problem. 

1. Introduction 
Recent studies by Acheson (1972,1973) on the stability of a uniformly rotating 

cylindrical flow in the presence of a magnetic field reveal that the unstable 
non-axisymmetric hydromagnetic waves propagate against the basic rotation. 
This may explain the slow, predominantly westward drift of the geomagnetic 
fields on the surface of the earth (cf. Acheson & Hide 1973). 

Acheson’s work, in which the Boussinesq approximation was made, may be 
summarized as follows. 

(i) Unstable modes were found to drift westwards, against the basic rotation. 
(ii) Conditions necessary for the excitation of special types of unstable modes 

(iii) Some upper bounds on the azimuthal phase speeds and the growth rates 

We shall elaborate these results. 
In  a cylindrical system of co-ordinates (w,  $, z )  let the azimuthal and z com- 

ponents of the magnetic field be denoted by B4 and B,, and those of the wave- 
number by m and k respectively. The axis of rotation is chosen to coincide with 
the z axis. Acheson found that if 1 + p  2 0, where p = wkB,lmB4, then all 
unstable modes drift westwards in the case of uniform rotation. In  the case of 
differential rotation, Acheson was able to show only that they drift westwards 
in a frame rotating with angular velocity amax, where Qma, is the maximum of 
Q(w) for all w. He also observed that the westward drift is relatively insensitive 
to generation mechanisms such as an unstable gradient of magnetic field, 
rotation or density. 
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(i.e. slow amplifying waves) were established. 

of the slow amplifying waves were estimated. 
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To study the condition necessary for the unstable modes to be excited, the 
axial magnetic field B, was neglected. Because of the slow propagation and slow 
amplification of the geomagnetic waves, Acheson considered the modes satisfying 
3 4  < pm2Q$, where p is the density, Q4 the local Alfv6n speed, defined as 
(B$/pw2)3, and w, the real part of the frequency with respect to a frame rotating 
with the uniform basic angular velocity Q,,. Sufficient conditions for stability 
were then established. Some upper bounds on the azimuthal phase speeds and 
growth rates for these slow amplifying modes were also estimated. 

In  this paper, an additional non-uniform axial field B,(a) will be included, 
and the Boussinesq approximation will not be made so that the density gradient 
will be properly accounted for everywhere (not just when it appears in the 
buoyancy term). Then we shall study the following. 

(i) The westward drift of the unstable modes. 
(ii) Conditions necessary for the excitation of all unstable modes, not just 

the slow amplifying modes. 
(iii) Upper bounds on the azimuthal phase speeds and growth rates of all 

unstable modes. 
In  addition, we shall investigate the stability of some special cases when the 

rotation is differential. We shall also discuss the validity of sufficient conditions 
for stability when the normal-mode assumption is not made. 

When the Boussinesq approximation is relaxed, we are unable to reproduce 
Acheson’s conclusion that the westward drift is insensitive to an unstable 
density gradient (Dp = dp/dm > 0) .  We are only able to show that if the density 
gradient is stable (Dp < 0)) and 1 +/3 2 0, then unstable modes drift westwards. 
Therefore, the question of whether or not the westward drift is affected by an 
unstable density gradient in an inhomogeneous fluid remains open. 

To remove the restriction that 3w: < pm2Q$ so that a general sufficient con- 
dition for stability with respect to all possible disturbances can be established 
is of interest not only in the problem of the earth’s core but also in other astro- 
physical and geophysical applications. For example, one of the major concerns 
in astrophysical problems is to construct a stellar model which is stable. Therefore 
the stability of all possible perturbations must be investigated. By relaxing the 
restriction, we establish a sufficient condition for stability which is slightly 
sharper than Acheson’s for the Iml = 1 mode. 

The extension (from the case of uniform rotation) to the case of differential 
rotation is a difficult problem. Nevertheless, Braginskii [1967, equation (2.19); 
see also Acheson 1973, equation (7.1)] has obtained a sufficient condition for the 
stability of a rotating spheroid under the assumption that the deviation from 
(rapid) uniform rotation is very small (a more precise statement of this assump- 
tion is described by equation (59) below and a comment which follows it). This 
condition indicates that a rotation which increases outwards from the axis has 
a stabilizing influence. Since the assumption is rather strong, the validity of 
this stabilizing influence remains to be seen. No sufficient conditions for stability 
of general differential rotation have been found. However, we do obtain results 
in some special cases. For example, we shall consider a case where the angular 
velocity is assumed to be much faster than the Alfvh speed. Then we shall 
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obtain a sufficient condition for stability which is analogous to the Richardson 
criterion obtained in non-magnetic plane parallel flow. This criterion sets an 
upper bound for a stable velocity shear. 

Thermal dissipation is important in both astrophysical and geophysical 
problems. However, this subject will not be discussed here. 

The plan of this paper is as follows. The equations of motion governing infini- 
tesimally small perturbation are given in $2.  A brief account of the stability with 
respect to axisymmetric perturbations is given in $ 3 mainly for the purpose of 
comparison with the stability results on non-axisymmetric perturbations dis- 
cussed in $ 4. In  this section, the question of the westward drift is investigated, 
some sufficient conditions for stability established and some upper bounds on 
the azimuthal phase speeds and growth rates estimated. In  $ 5  it is proved that 
our sufficient conditions for stability in the case of uniform rotation and in the 
case of a strong magnetic field are valid even though the set of eigenfunctions is 
not complete. Finally, in $ 6, we shall discuss the question of whether the sufficient 
conditions for stability established may be satisfied near the axis when the inner 
cylinder is removed. 

2. The equations of motion 
We consider a fluid rotating differentially between two rigid, infinite, coaxial 

cylinders in the presence of an axial and a toroidal magnetic field. The fluid is 
assumed to be incompressible but inhomogeneous and all the dissipative mech- 
anisms such as viscosity, magnetic resistivity and thermal diffusivity are 
disregarded. Then the governing equations of motion in the inertial frame in 
cylindrical polar co-ordinates (w, 4, z )  are 

Dv/Dt = -p-lVn+p-'(B.V)B- B,g,, (1) 

v.v = 0, 

DB/Dt = ( B .  0 )  V ,  V .B = 0, 

where D/Dt = a/at + v .  V ,  v is the velocity of the fluid, p the density, p the 
pressure, B the magnetic field, gm the gravitational acceleration, n = p + i B  .B 
and (6,) ti+, ez) are unit vectors parallel to the three axes. 

The equilibrium state is described by 

v, = 8+ wrR(w), B,  = e6 B4(m) + 6, Bz(a),  po  = po('u), etc., 

g ,  - wQ' = G, - ~ W Z H ,  - ~ w Q $  -p-'BZ DB,. 

(4) 

( 5 )  
which gives 

The subscript zero used to indicate the equilibrium state in (4) has been dropped 
in (5) and will be dropped hereafter. The following notation is (or will be) used: 

D = d/dw, G, = -p-lDp, (6) 

The boundary conditions are those of perfectly conducting rigid walls. 
27-2 
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In  linearizing the equations of motion, we shall assume that although gm 
depends upon the radial distance w its Eulerian variation may be neglected, i.e. 
Sg = 0. Assuming a normal-mode solution for the Lagrangian displacement 
E = ( E m ,  E,, E z ) ,  i.e* 

g = g(w;$,z)exp(iot) = f(w)exp(icrt+im$+il%z), ( 8 )  

and noting that the Lagrangian differential operator A and the Eulerian differ- 
ential operator 6 are related by 

A = 6 + g . V ,  (9) 

we have w2g - 2iwBf - Cg = 0, (10) 

where w = a+mQ = wr+iwi ,  iBg = -iC2(&,&-i3+Em), ( l l ) ,  (12) 

cg 5 p-lV(Sr) + m a ; (  1 + p)z g + 8,"2 + (CD - 4Q2) - WH,] ,gW 
+ 2imQ:( 1 +,8) (6, E$ - C,5,). (13) 

Here p is defined as 

while the Rayleigh discriminant CD and the Brunt-Vaisiila frequency N are 
defined as 

/3 = akBz/mB,, (14) 

CD = w-~D(w*Q~), N2 = -p-l(Dp) (9,- wQ2) (15L (16) 

respectively. An explicit expression for S?T is not needed here and is therefore 
not given. 

We note that in deriving (13) we have used 

SB = V X  ( ~ x B )  = ~ ~ B ~ ( ~ + ~ ) ~ - ~ ~ ( D B ~ - B ~ / w ) ~ , - ~ , ( D B , ) E , ,  (17) 

which is obtained by linearizing (3) and by using the relation 

Sv = iwg - 8, wDQE,. (18) 

It is also worth pointing out that the gradient DB, of the axial magnetic field 
appearing in (17) cancels out in (13). 

The linearized version of the boundary condition that the radial component 
of velocity v, vanishes at both walls gives 

gm(w) = 0 at w = wl,w,. (19) 

Thus the stability problem consists of (10) supplemented by the linearized 
continuity equation 

where D, 3 D+m-l, and subject to boundary conditions (19). 
An equation of the form of (10) is convenient for the case of uniform rotation 

since the frequency w in the rotating frame is constant. For the case of differential 
rotation it is more convenient to rewrite (10) as 

V . 5  = D*$m+imw-l[,+ikEs = 0, (20 )  

a2g - 2ioF3 - Qg = 0,  

where iFg = -m!2f-i!2(8,~,-84~,), ( 2 2 )  

Qg = - m2Q2g - 2ima2( 8, [, - 8, Em) + Cg.  

(21) 

(23) 

The operator C is defined by (13). 
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Another alternative form of (lo),  or (21), is also of interest. Eliminating .& 
between the w and the z component of (10) and also eliminating t4 and tZ among 
the $ and z components of (10) and ( Z O ) ,  we obtain 

= -D(8n) 1 + 2m[w52--mQ$(l+p)]8n 
P w[w2-m252;(1 +/yj 7 

and 

respectively, where we define 

Finally, eliminating 6n between (24) and (25) gives 

[w2 - m2Q$( 1 +p)2] D, &, - ?m~i~-l[wR -d2$( 1 +@)I 5, = M28n/p 

M 2  = k2+m2/w2. 

All the equations above are formulated in the inertial frame. It is sometimes 
more convenient to consider motion in a uniformly rotating frame, for example 
when the upper bound of the azimuthal phase speeds is to be estimated (cf. 
$ 4.3) and when sufficient conditions for stability are to be established (cf. case 
(iii) in $4.2).  We decompose the rotation Q(w) into a uniform part R, and a 
differential part 52,(w): 

The uniform rotation Q, is left unspecified here but will be specified later [e.g. 
(64)l. Then in a frame rotating with 52, (this frame will be called the 52, frame 
hereafter), the linearized equation of motion written in terms of the Lagrangian 
displacement 

Q(a) = R,+ R,(w). (28) 

g = g(w) exp (iqt + im$ + ikz) (29) 

is 
where 

G = ~ m Q l g - ( 5 2 ~ + Q 1 ) ( 6 ~ ~ 4 - 6 4 ~ , ) ,  (31) 

Hg = - m252; g - 2im[R1( 52, + 52,) - 52$( 1 + p)] (6 ,  (#, - 6, 'g,) 
+p-1V(8~)+m2R$(1 +P)25+~.m[N2+2~(520+Ql)~521-~.aH,]~,j , .  (32) 

The notation here is the same as before. We note that (30) supplemented by 
(31) and (32) reduces to (21) supplemented by (22) and (23) if we set R, = 0 and 
replace q and 52, by u and R. 

It is important to point out that all the operators involved, i.e. iB, C, iP, Q,  
i K  and H ,  are Hermitian. This property is crucial to our stability analysis. We 
shall prove this property later by showing that the proper inner products have 
real values. 



422 C.-H. Sung 

We d e h e  an inner product for any operator A as 

where R is the region occupied by the fluid in the equilibrium state, 5* is the 
complex conjugate of 6 and the last identity is introduced as shorthand. For 
example, if the equilibrium configuration is cylindrical, R is taken as the volume 
between the two coaxial cylinders bounded by a proper length in the z direction. 
For simplicity, we shall write 

With t,he above definition of an inner product, the frequency of a small 
perturbation follows from, say, (21) as 

Suppose that iF and Q are both Hermitian operators. Then the stability is 
determined by the sign of the real discriminant 

= (5, iw2 + ( 5 9 % )  (5, QQ. 

0-r = (5, i W / ( S ,  5) 

(36) 

(37) 

For unstable modes (i.e. D < 0 ) ,  the real and imaginary parts of are given by 

and 
respectively . 

3. Stability of axisymmetric perturbations (m= 0) 

The criteria for stability with respect to axisymmetric perturbations are 
relatively well understood and are associated with Rayleigh for the non-magnetic 
case and with Michael for the magnetic case when B, + 0 but B, = 0. We shall 
briefly discuss them for the purposes of comparison with those for non-axi- 
symmetric perturbations. Readers are referred to Chandrasekhar (1 gel), 
Howard & Gupta (1962) and Roberts & Soward (1972) for further details. 

The case B, + 0 is of particular interest for two reasons. One is that, as B, 
approaches zero, the stability criterion (45) obtained with L2 + 0 and B, =k 0 + B, 
does not approach the Michael criterion (42), nor the Rayleigh criterion when 
we further set B, = 0. This is a well-known stability paradox, The other reason 
is the loss of the conservation of the angular momentum per unit mass in the 
x direction (denoted by h hereafter) even though the perturbations are axi- 
symmetric. 

For the removal of the paradox, readers are referred to the literature available 
(see, for example, Velikhov (1959) and Chandrasekhar (1961, p. 389) for removal 
by means of magnetic dissipation and Howard & Gupta (1962) for removal by 
an ingenious argument without invoking dissipation). 
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The Lagrangian variation in his (cf. Lynden-Bell & Ostriker 1967, p. 304) 

Ah A ( ~ 6 6 . v )  = ~W(U[+-%Q&). (39 )  

Thus, if h is conserved (i.e. Ah = 0 ) ,  we have 

u(+ - 2iQC, = 0 

and vice versa. An immediate consequence of Ah =+ 0 in the non-magnetic case 
is the loss of some (or perhaps all) of the stabilizing effect of rotation which exists 
when Ah = 0. Therefore, in the absence of density stratification one may expect 
rot’ational shear instabilities to arise in some cases even though @ > 0. In  the 
presence of a magnetic field, the q5 component of ( 2 1 )  gives, form = 0, 

Clearly, Ah -+ 0 if B, $. 0 (we exclude here special perturbations satisfying 
wkB, [+ - 2iB+ tm = 0 and assume that k =f= 0).  

In  the absence of an axial field, relation ( 4 0 )  is valid and we may readily 
obtain the necessary and sufficient condition for stability as 

N2 + CD - WH; 2 0 everywhere. ( 4 2 )  

This criterion was first derived by Michael for p = constant (see Roberts & 
Soward (1972, equation 2.46) for an extension to include the buoyant force) and 
will be called the Michael criterion. We note that it reduces to the Rayleigh 
criterion when B - 0. When B, -+ 0, ( 4 0 )  is not valid and we must return to 
(21)-(23).  We obtain + .- 

+ ( N 2  + 2wQDQ - wH,- 4Q$+ ~ ~ k ~ Q ; ) 1 5 , 1 ~ ] .  (44 )  

The Hermitian property of iF  and Q is readily observed by noting that both 
inner products are real. Then a sufficient condition for stability follows from 
(44 )  as 

This condition was first derived by Howard & Gupta for p and B, constant and 
g ,  = 0 and will be called the Howard-Gupta criterion. We note that this criterion 
is not altered when B, is non-uniform. This is because the term involving the 
gradient of B, has cancelled out in the derivation (13 )  as has already been 
mentioned. This cancellation is accidental and due to the geometry of an infinite 
cylinder. For a spheroidal configuration, the gradient of B, may appear. 

Perhaps the most important effect of B, on stability is the loss of the conserva- 
tion of angular momentum h. As a consequence, ‘shear instabilities’, both 
rotational and magnetic, become possible in some cases. This may be inferred 
from a comparison of (42 )  and (46). We observe that the stabilizing term 

N 2  + SmQDQ - wH, - 4Q; + w2k2Q; 2 0 everywhere. (45 )  
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4(Q2 + st$) appearingin (42), where B, = 0, islost in (45), where B, .i. 0. Certainly, 
this inference cannot be regarded as final since (45) is only a sufficient condition 
for stability. Nevertheless, a physical argument for stability based on the loss 
of the conservation of angular momentum per unit mass tends to support the 
conjecture made here. 

4. Stability of non-axisymmetric perturbations (m =k 0) 
In  the following, we shall investigate the effect of the density stratification 

on the various results obtained by Acheson under the Boussinesq approximation. 

4.1. Westward drift 
We shall define some terminology. For the linearized equations of motion 
formulated in the inertial frame, the angular velocity of wave propagation is 
given by 4I = -u,/m. The angular velocity of wave propagation with respect 
to a frame rotating with a local angular velocity Q(w)  is then given by 

d R  = dI  - ~ ( w )  = - w,./m. 

Thus, if dR = -w,/m < 0, then the unstable modes propagate westwards with 
respect to a frame rotating with a local angular velocity Q(w) .  

Multiplying (27) by wtz  and then integrating over (w1, wz) gives 

+ [02 - m2Q$( 1 + p)2 - (N2 + 2wQDQ - wHw)]  1 <,,, ( 2  

[uQ-rnQ$(l +/3)I24k2 - 

The imaginary part of (46) is 

4k2m2Q$( 1 f /3)2 ( Q2 + Q f  ) 

w2M2 a 
(47) 

We note that for unstable modes (wi =# 0) the integrand in (47) must vanish at 
least somewhere. 

In  order to prove the westward drift, we need a lemma which ensures that 
unstable modes must propagate (provided (49) and (50) are satisfied). That is, 
if wi + 0 then w, += 0. Acheson proved this lemma by an argument of contra- 
diction. Suppose that w, = 0 when (.+ += 0; then (47) reduces to 
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Thus, for wi += 0 the integrand must vanish somewhere. This is not possible for 
k + 0 if neither 

nor 
1 + p > o  (49) 

-Dp  2 0 (50) 

is violated. We thus have a contradiction if (49) and (50) are satisfied simul- 
taneously. The westward drift follows from (47) provided that both (49) and (50) 
are satisfied. This can be seen in the following manner. I n  the case of uniform 
rotation, w, is constant and the vanishing of the integrand in (47) requires that 
- mQ/w, < 0. This implies that - w,/m < 0 since Q is chosen as positive. In  the 
case of differential rotation, we require -mQ(w)/wr(a) < 0 for, at least, some 
w in (al, wz). This is the same as requiring that - w,/m = dI - Q(w) < 0 for 
some a. Therefore we have q$ < Q(w) < Q,,,, where Q,,, 3 sup Q(w), and all 

unstable modes propagate westwards with respect to a frame rotating with 
Qmax. Thus Acheson’s results are recovered. 

When the Boussinesq approximation is made, density stratification appears 
in the real part of (46) but not in its imaginary part [i.e. (47)]. Acheson, therefore, 
noted that the westward drift is not affected by a top-heavy density gradient 
(Dp > 0). Whether or not this conclusion remains valid when the Boussinesq 
approximation is not made remains an open question. We note that, in the 
method used here, because of the presence of the density-stratification terms in 
the imaginary part (47) we are able to prove neither the lemma that if 
wi + 0 then w, += 0 nor the westward drift of the unstable modes when 
Dp > 0. 

The effect of magnetic-field distribution on the westward drift has been 
discussed by Acheson (1973) while the effect of a spheroidal equilibrium con- 
figuration, instead of a cylindrical one, has been discussed, for example, by 
Hide (1966) and by Malkus (1967). The question of why the unstable modes must 
drift westwards has yet to be answered. Noting that this tendency also prevails 
in the absence of a magnetic field, perhaps an explanation should be sought in 
the simpler problem of the non-magnetic case as a first step. 

W 

4.2. Sufficient conditions for s t a ~ ~ ~ i ~ ~  
I n  the following, we shall establish sufficient conditions for stability when 
B, += 0 and B, = 0 and in some cases when B, += 0 += B,. In  the case of general 
differential rotation, we are unable to obtain a satisfactory sufficient condition 
for stability. Nevertheless, we shall briefly discuss the general case to demonstrate 
an approach which may be improved to obtain a more satisfactory result. For 
some special cases we are able to obtain sufficient conditions for stability of some 
practical importance. The special cases of slight differential rotation and strong 
magnetic field, in a spheroidal configuration, have been discussed by Braginskii 
(1967) and by Roberts & Soward (1972) respectively. We shall rediscuss them 
in the context of a cylindrical flow with their limitations more precisely stated. 
These limitations are important restrictions and could be rather severe in some 
cases. We shall also discuss the case of rapid rotation. 
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a change of variables 

Then (27) becomes 

(i) General differential rotation. For unstable modes (wi + 0) we may introduce 

f ,  = u-47. (51) 

[wQ - mQ$( 1 +/?)I2 4plc2 
+o[02-m2Q$(l +p)2] M 2  ' 

k2 m2(DQ)2 
-u2+N2+- (2wQDQ)- -  -wH,+m2Q$(l+p)2]  11 = 0. (52) 

W M2 4M2 

We obtain an integral by first multiplying (52) by 
over (q, w2). The imaginary part of this integral can 

where A is given by 

J 

wy* and then integrating 
be written in the form 

(53) 

It can be shown that the first three lines of (54) are all positive. Thus we obtain 
as a sufficient condition for stability 

Two limiting cases are of interest. When the magnetic field is absent, (55)  
reduces to 

where we have used 
NZ/W2(DQ)2 2 f, (56) 

0 F k2/M2, m2/w2M2 < 1. (57) 
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This is a modified form of the Richardson criterion so familiar in plane parallel 
flow (cf. Howard & Gupta 1962). On the other hand, when the rotation is uniform, 
(55) gives 

This is a generalized and somewhat improved version of the sufficient condition 
for stability first established by Acheson [1973, equation (5 .5)]  for B, = 0 and 
under the Boussinesq approximation. We note that this sufficient condition for 
stability may be obtained more directly by taking inner products of (10) .  Then 
the condition f& positive definiteness of (5, C g )  gives the sufficient condition 
for stability (58). 

The applicability of the sufficient condition (55) is greatly restricted by the 
appearance of 1wI2 in the term coupling the differential rotation and magnetic 
field. However, in certain limited circumstances it may still be of some use. For 
example, if we are only interested in oscillation periods within a certain range, 
then the lower bound of this range gives a lower bound on wo which in turn can 
be substituted for 1012. Then (55) can be easily applied to check stability. 

(ii) Slight differential rotation. The case when the deviation from uniform 
rotation is very small has been investigated by Braginskii (1967) for a spheroidal 
configuration. We shall apply this assumption to differentially rotating flow 
between two coaxial cylinders but with the conditions required for such an 
assumption more precisely stated. It will be found that the conditions required 
are rather severe. Consequently, the significance and, even, the validity of the 
sufficient conditions derived remain to be demonstrated. 

The linearized equation of motion is (21)  with iP and Q defined by (22)  and (23) 
respectively. We decompose the rotation into a constant and a differential part 
as in (28) .  In  assuming slight differential rotation, we require that 

N2 - wH, - 40; + r n q (  I + /9)2 > 0. (58) 

lQl/Qol < 1 ,  IwDQ,/QII 3 1 for all w. (59% 6 )  

Restriction (59a)  is a reasonable one since it only requires that the rotation 
deviates slightly from a uniform one. For example, in the problem of the earth’s 
core dynamo (cf. Braginskii 1967, p. 852),  we have the following relative orders 
of magnitude for the basic uniform rotation, the local Alfvhn speed due to B# 
and the deviation from a uniform rotation: 

ZQ,: a,: 0, 106: 103: I .  (60) 

We note that (59a)  is reasonably satisfied. Restriction (59b) is a very severe one 
which requires that the gradient of deviation at any point must be very large 
in comparison with the deviation itself at that point. This can be true only when 
the ratio Q,/Q, is so small that it will remain so everywhere even for large lDQ,l. 

Requirement (59a)  assures that Ql is negligible in comparison with Q,. 
Requirement (59b)  justifies retention of 2wQ,DQ,  in comparison with 2m2Q0 Ql, 
which appears in the expansion of m2Q2 = m2(Qo+ QJ2 [cf. (23)  and (13) ] .  One 
may argue that 2m2Q, Q, may be neglected in comparison with m2Q$( 1 +/9)2 
without invoking (59b) .  But then, to be consistent, the term 2wQ,DQ1 must be 
neglected as well. Then the stabilizing influence of rotation when DQl > 0 does 
not appear in the expression for Q in (23) .  
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Applying assumptions (59), we have as the simplified forms of ( 2 2 )  and (23) 

iF5 N - mQ0 5 - iQo( &,, t+ - 64 tw), (61) 

Q! N -m2Q,25-2im[Qt-Q$(i +8)] (ewt+-  e,tw)+p-'V(s~)+m2"~(i + / 3 ) 2 c  

+ Gw(N2 + 2wQoDQ, - wH,) tW. (62) 

Then the stability discriminant D defined by (36) is readily computed and a 
sufficient condition for stability follows as 

(63) 

We note that the rotation has a stabilizing influence if it  increases outwards 
from the axis. We also note that if Q, = 0 then (63) reduces to the sufficient 
condition for stability (58) for the case of uniform rotation. 

(iii) Strong mugneticJieZd (LI$ 2 a",. The title 'strong magnetic field' is some- 
what misleading and we shall give a more precise description. Decomposing the 
rotation in the manner of (28 ) ,  we define the uniform part as 

N 2  + 2wQ0 DQl - aH, - 4!2: + m2Q$( 1 +/3)2 2 0 everywhere. 

Qo 3 min "(.a). 
W 

Clearly, we have Ql(w) 2 0 for all w.  Then 'strong magnetic field' means the 
case with the property that 

This does not necessarily mean that the magnetic energy is required to be larger 
than the rotational energy since it is permitted that 0; be much larger than Q:. 
The restriction required here is much less severe than that in the case of slight 
differential rotation since (59) is not needed and (65) can be satisfied in problems 
such as the problem of the earth's core [cf. (SO)]. We shall see shortly, however, 
that in order to obtain stability a much stronger magnetic field than (65) is 
required [cf. (68)l. This perhaps justifies somewhat the title 'strong magnetic 
field'. 

Considering motion in the LIo frame and putting I?, = 0, we readily obtain 
from (31) and (32) 

"J 2 a;. (66) 

( 5 , i W  = - m  pQ11tl2-i p(Qo+Ql)( t : t+- twt$) ,  (66) 

(67) 

S S  
(5, -1 = Sp[mQo Q, It# + m 2 ( q  - Q2 1) I t s l  + To I 2 t w  + I + TI t w  I 21, 

where To and T are given by (68) and (69) respectively. We not0 that both 
(5, i-) and (5, H 5 )  are real. Thus iK and H are Hermitian. Then a suficient 
condition for stability follows from (67): 

To = Q~-Q1(Qo+",) 2 0 
and 

T = N2+2(~0+Q1)(aDQ1+2!21)-wHw-4Q~+m2(LI~-Q~) 2 0 (69) 

must be satisfied simultaneously everywhere. Here we have assumed that (65) 
holds. A sufficient condition for stability of this type has been obtained by 
Roberts & Soward (1972) for a spheroidal configuration. As noted earlier, a 
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much stronger magnetic field is required by (68) than that by (65) in order to 
obtain stability. However, (68) can be satisfied, for example, in the problem of 
the earth’s core [cf. (60)l. We have not been able to obtain a meaningful sufficient 
condition for stability when B, $: 0. 

(iv) Rapid rotation. In  the earth’s core, the rotation is much faster than the 
local Alfvkn speed but the gradient of rotation may not be as steep as the gradient 
of the magnetic field. For problems of this type, the following conditions may 
be satisfied: 

Q 2 >  Q$ but IDQ21 N IDQ$l. (70) 

Assuming (70) and B, = 0, the terms m2Q$ and mQ$ may be neglected in 
comparison with m2Q2 and mQ2 respectively in (27). Then (27) simplifies to 

- w’+ N’+~wQDQ+- - 
M2 

Following the same procedure as in the case of general differential rotation, 
we introduce the change of variable (51) to reduce (71) to 

Multiplying (72) by wq* and integrating over (wl,w2) gives an integral whose 
imaginary part can be written in the form 

with A given by 

(731 

Thus a sufficient condition for stability is 

k2cD m2(DQ)2 2B+DB+ - 0 everywhere. 
N 2 + ~ -  4M2 PW 

A more convenient alternative form is 

N 2  - 2B+ DB,/pm 
2 a. 

w ~ ( D Q ) ~  

(75) 

We note a similarity between (76) and the modified Richardson criterion (56) for 
a rotating flow. 
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4.3. Upper bounds on the azimuthal phase speeds and growth rates 

If we consider motion in the Qo frame, where Q0 is defmed by (64), then the 
equation of motion is (30) with the inner products of iK and H given by (66) 
and (67). A n  alternative form of (67) is 

(5, m = / P i  - "2Q211512- 2imQAQ2, + Qd (6 c$$ - cW 6; + m2Q$(1+ p)z ]E*l 

+ Q$l 2fI ,  +im(i +p) ,$I2 + [N2  + 2w(Q0 + a,) DQ, - wH, - 4Q2, 

+m2Q$(1 +PI2] IL7I". (77) 

Because of the Hermitian property of ih' and H ,  the real and the imaginary parts 
of the frequency q are given by 

respectively. 
It follows from (66) and (78) that 

lqrl 6 Qo+(lml + i ) Q m a x ,  (80) 

where QmaX is the maximum of I Q,(w)  I. Thus the azimuthal phase speed in the 
a,, frame is bounded above by 

IGl 6 Qo+2Qmax,  (81) 

where we have defined C, + iCi = C = - qlm. 
Estimation of an upper bound on growth rates for the case of general differential 

rotation involves some difficulty as we are only able to give a bound which 
grows indefinitely as Iml -+a. However, it  is possible to make an estimate in the 
case of a strong magnetic field when instability arises from the violation of (69) 
while (68) is satisfied. For this case, we have 

IqiI' G - ( 5 , H S ) / ( G , 5 )  Tmax, 

where Tmax = max [ - T(w)]  and T is defined by (69). 
W 

The case of uniform rotation is of particular interest and some concrete 
results are possible. Setting Ql = 0, it follows from (81) that the absolute value 
of the azimuthal phase speed is bounded above by st,. Since all unstable modes 
drift westwards, we have 

For the growth rates, it follows from (77) and (79) that 

-Qo G c, < 0. 

qi" G - ( 5 , H S ) / ( S , 5 )  6 flmax, 

S ( W ) ~  - ( N 2  - wH, - 40;). (85) 

IPI2 = = - (5 ,H5) / (5 ,5)  G %lax. (86) 

(83) 

(84) 

where PmaX is the maximum of 

It also follows from (78) and (79) that 
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This upper bound remains unchanged if we replace q by 41% ( = - c) .  Thus 

Before proceeding, we note that if B, = 0 then a smaller upper bound is obtained, 
i.e. 

Since the extension to include B, .f; 0 is trivial for the discussion in this section, 
we shall make no distinction between the case B, = 0 and the case B, .f; 0 in the 
following discussion. 

Acheson (1973) established a quadrant theorem, similar to Howard’s (1961) 
semicircle theorem for plane parallel flow, for ‘slow amplifying waves’ when the 
rot,ation is uniform, the magnetic field purely toroidal and the Boussinesq 
approximation is made. ‘ Slow amplifying waves’ are defined as the unstable 
modes occurring when the equilibrium configuration satisfies 

1Cl2  6 %ax. (87) 

(88) lc12 6 max [ - (N2- wH, - 3 ~ $ ) ] .  

0; 9 N 2 + Q $ ,  so that 1qI2 N Q$lN2+fi$I/Q$ (89) 

Then the quadrant theorem states that all such ‘slow amplifying waves’ lie 
within a quadrant with a radius of @2i1rnax ( - N 2  +wDQ$) located in the 
second quadrant of the complex c plane. 

According to the upper bounds estimated above [cf. (83), (84) or (87)], which 
are not restricted to (slow amplifying modes’ nor subject to the Boussinesq 
approximation, all unstable modes lie within a rectangle, with sides of length 
Q, and S,,,, located in the second quadrant of the complex c plane. The case 
Qo 2 S,,, is of particular interest for the problem of the earth’s core. In  this 
case, the upper bound on c: is improved from a value of SZ: to S&,, and we obtain 
a quadrant theorem valid for all unstable modes. This quadrant has a radius 
of S,,,, which is larger by a factor of approximately 4Q0X;ix than the one 
valid for ‘slow amplifying waves’. 

5. Remarks on the normal-mode stability analysis 

form 

and said that the equilibrium state is stable if the imaginary part of all eigen- 
values c is 2 0. This inference is strictly valid onIy if the eigenfunctions (i.e. 
perturbation functions) form a complete set. It is known that the set of eigen- 
functions of the rotating MHD problem is not complete when perturbations are 
non-axisymmetric since then the singularity in the differential equation intro- 
duces the continuous spectrum. Therefore it is important that we perform a 
stability analysis of an initial-value problem without making the assumption (90). 

So far, we have assumed that the perturbation function has a normal-mode 

c = w; $,4 exp (iat)  (90) 

Consider a linear vector equation 

Pe + 2(iF0 + Fl) $ + &g = 0, (91) 
where a dot indicates a/at and the operators P, iFo, Fl and Q are Hermitian in an 
inner-product space defined by (33). Let 



432 C.-H. Sung 

where D is a set of admissible solutions of (91) satisfying some proper boundary 
conditions. We also define Po as the value of (g, Pe) + (5, Q5) at the initial time 
t = 0. Then we have the following theorem. 

Suppose that P, iF,, Fl and Q are Hermitian, with P > 0 and Fl 2 0. Then 
(i) if h > 0, IIS(t)l I E (5, 5)4i is bounded for all t > 0; 

(ii) if h = 0, 1 Ig(t)] 1 < (/l,/a)+t + 1 ]5(0)] 1 for all t 2 0. 
This stability theorem is a straightforward extension of theorems proved by 

Barston (1970) for F, = 0 and by Roberts & Soward (1972) for Fl = 0. The proof 
follows immediately by noting that 

mt, P t )  + (S,QS)l/Et = (PiS + Q S , $ )  + (t, pif + Q S )  

(& Pa + (4, QQ G P o .  

= - 4(e, e) < 0, (93) 
which gives 

(94) 
In  the absence of, say, viscous dissipation, Fl E 0 in (91). Then the require- 

ment that (5, Q g )  be positive definite gives a sufficient condition for the bounded- 
ness of 1/51 /. Thus, in the normal-mode stability analysis, if the stability equation 
is formulated in the form (21) then the sufficient conditions for stability obtained 
by requiring positive-definiteness of (g, @) remains valid (i.e. I I f 1  I is bounded) 
even if the set of eigenfunctions is not complete. For this reason, the sufficient 
conditions for stability such as (45), (58) [see the comment following (58 ) ] ,  (63) 
and (68) and (69) remain valid. On the other hand, the validity of sufficient 
conditions for stability such as ( 5 5 )  and (74) remains open. 

I f  the rotation is uniform, then the stability equation in the presence of viscous 
dissipation may be written in the form (91) with all the hypotheses of the theorem 
satisfied. Thus the sufficient conditions for stability (58) remain valid in the 
presence of viscosity. However, a similar conclusion has not been reached in 
the case of differential rotation, since it is not possible to write the linear stability 
equation in the form (91) with all the hypotheses of the theorem satisfied. 

6. Concluding remarks 
As pointed out by a referee, there is the question of whether it is possible for 

sufficient conditions for stability such as (58) to be satisfied near the axis as 
a+ 0 when the inner wall is removed and the axial magnetic field neglected. 
We shall consider this important question in the non-rotating case. 

When !2 = 0 = B,, an application of Barston's (1970) theorem gives as the 
necessary and sufficient conditions for stability 

- g, Dp - w-~D(wB$) > 0 everywhere. (95) 

Here we have set (ml = 1 since these perturbations are the least stable non- 
axisymmetric ones. We note that, if we put B, = 0 in (58) and then multiply 
this equation by p, i t  reduces to (95). Near the axis, we have the following 
approximations: 

9, gow, (96) 

P - Po-Pa'zua, P P o - P p P ,  B, - BoaY, (97) 
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where go, po, pa, p,, pB, Bo, a, p and y are positive constants. Approximation (96) 
is a consequence of Poisson's equation for self-gravitation while the minus sign 
in front of pa and pp is a consequence of the assumption that both density and 
pressure fall off away from the axis. 

Using (96) and (97), the equilibrium condition (5) with !2 = 0 = B, can be 
written as 

Clearly, we must have /3 > 2 and y 2 1 in order to satisfy (98). The Iatter require- 
ment shows that B, cannot be singular as m+O. The restriction on a is that 
a > 0. Using these properties, (95) has the following approximate form near 
the axis: 

(99) 

For a homogeneous fluid, cc = 0 and (99) is always violated. Thus instability 
must occur near the axis. To prevent such instability, the distribution of density 
and toroidal field must satisfy the condition 

(y  + 1) Bg wQ'--1. Po 90 w PPp d - l -  (98) 

UP, go wa N (By + 1 )  Bi ~xY-1) > 0. 

2(y-I) > a  or y > l+ ia .  (100) 

For example, if u = 1.5 and y = 2 ,  then instability near the axis does not occur. 
The occurrence of instability near the axis may be explained as the com- 

petition between the stabilizing influence of the gravitational buoyant force and 
the destabilizing influence of the magnetic buoyant force. It is known that the 
magnetic buoyant force may be destabilizing or stabilizing depending on how 
the magnetic field is stratified. For the region away from the axis, a distribution 
such as B, oc a-l is allowed and the magnetic buoyant force is stabilizing. But 
such a distribution is not permitted near the axis, where the equilibrium con- 
dition requires that B,oc wy with y > 1, and the magnetic buoyant force is 
always destabilizing in this region. This explains why instability near the axis 
must occur in a homogeneous fluid since there is no stabilizing gravitational 
buoyant force to suppress it. For the same reason, such instability must occur 
when the density distribution is unstable (Dp > 0 )  near the axis. 

If the equilibrium configuration is spheroidal, then the situation is less 
optimistic. Following the argument of the competing effects of the buoyant 
forces, it  is easy to see that instability near the axis may be suppressed a t  least 
in the neighbourhood of the core if the density distribution is stable there and 
(100) is satisfied. However, the a component of the gravitational buoyant 
force becomes negligible near the north and south poles of the spheroid since the 
a component of the gravitational acceleration is very small in these two regions. 
This means that the stabilizing influence of the gravitational buoyant force in 
the a direction in these two regions is too weak to overcome the destabilizing 
influence of the magnetic buoyant force in that direction. Thus instability near 
the axis may still occur in the neighbourhoods of the south and the north poles. 
To suppress it, there are two possibilities: one is by rotation and the other by a 
poloidal magnetic field. We hope to investigate this problem in the future. 

I wish to thank the referees for their very constructive suggestions. The 
financial support of the Science Research Council is gratefully acknowledged. 
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